Roberti, Andrea; Muradore, Riccardo; Fiorini, Paolo; Cristani, Marco; Setti, Francesco An energy saving approach to active object recognition and localization Conference Annual Conference of the IEEE Industrial Electronics Society (IECON).Washington, DC, USA. 2018. Abstract | Links | BibTeX | Tags: Active object recognition, Artificial Intelligence, Computer Science, Learning, Object recognition, Pattern Recognition, POMDP, Robotics Roberti, Andrea; Carletti, Marco; Setti, Francesco; Castellani, Umberto; Fiorini, Paolo; Cristani, Marco Recognition self-awareness for active object recognition on depth images Conference BMVC 2018 2018. Abstract | Links | BibTeX | Tags: 3D object classifier, Artificial Intelligence, Computer Science, Object exploration, Object recognition, POMDP Singh, Gurkirt; Saha, Suman; Cuzzolin, Fabio Predicting action tubes Journal Article 2018, (Proceedings of the ECCV 2018 Workshop on Anticipating Human Behaviour (AHB 2018), Munich, Germany, Sep 2018). Abstract | Links | BibTeX | Tags: Artificial Intelligence, Computer Science, Computer vision, Object recognition, Pattern Recognition, Robot, Robotics
2018
title = {An energy saving approach to active object recognition and localization},
author = {Andrea Roberti and Riccardo Muradore and Paolo Fiorini and Marco Cristani and Francesco Setti},
editor = {IECON 2018},
doi = {10.1109/IECON.2018.8591411},
year = {2018},
date = {2018-10-21},
organization = {Annual Conference of the IEEE Industrial Electronics Society (IECON).Washington, DC, USA. },
abstract = {We propose an active object recognition (AOR) strategy explicitly suited to work with a real robotic arm. So far, AOR policies on robotic arms have focused on heterogeneous constraints, most of them related to classification accuracy, classification confidence, number of moves etc., discarding physical and energetic constraints a real robot has to fulfill. Our strategy adjusts this discrepancy, with a POMDP-based AOR algorithm that explicitly considers manipulability and energetic terms in the planning optimization. The manipulability term avoids the robotic arm to encounter singularities, which require expensive and straining backtracking steps; the energetic term deals with the arm gravity compensation when in static conditions, which is crucial in AOR policies where time is spent in the classifier belief update, before to do the next move. Several experiments have been carried out on a redundant, 7-DoF Panda arm manipulator, on a multi-object recognition task. This allows to appreciate the improvement of our solution with respect to other competitors evaluated on simulations only.},
keywords = {Active object recognition, Artificial Intelligence, Computer Science, Learning, Object recognition, Pattern Recognition, POMDP, Robotics},
pubstate = {published},
tppubtype = {conference}
}
title = {Recognition self-awareness for active object recognition on depth images},
author = {Andrea Roberti and Marco Carletti and Francesco Setti and Umberto Castellani and Paolo Fiorini and Marco Cristani},
editor = {British Machine Vision Conference (BMVC). Newcastle-Upon-Tyne, UK. (bmvc2018.org). Spotlight, 2% acceptance rate.},
url = {http://bmvc2018.org/contents/papers/0593.pdf},
doi = {10.5281/zenodo.3362923},
year = {2018},
date = {2018-09-06},
organization = {BMVC 2018},
abstract = {We propose an active object recognition framework that introduces the recognition self-awareness, which is an intermediate level of reasoning to decide which views to cover during the object exploration. This is built first by learning a multi-view deep 3D object classifier; subsequently, a 3D dense saliency volume is generated by fusing together single-view visualization maps, these latter obtained by computing the gradient map of the class label on different image planes. The saliency volume indicates which object parts the classifier considers more important for deciding a class. Finally, the volume is injected in the observation model of a Partially Observable Markov Decision Process (POMDP). In practice, the robot decides which views to cover, depending on the expected ability of the classifier to discriminate an object class by observing a specific part. For example, the robot will look for the engine to discriminate between a bicycle and a motorbike, since the classifier has found that part as highly discriminative. Experiments are carried out on depth images with both simulated and real data, showing that our framework predicts the object class with higher accuracy and lower energy consumption than a set of alternatives.},
keywords = {3D object classifier, Artificial Intelligence, Computer Science, Object exploration, Object recognition, POMDP},
pubstate = {published},
tppubtype = {conference}
}
title = {Predicting action tubes},
author = {Gurkirt Singh and Suman Saha and Fabio Cuzzolin},
editor = {ECCV 2018 Workshop on Anticipating Human Behaviour (AHB 2018), Munich, Germany, Sep 2018},
url = {http://openaccess.thecvf.com/content_ECCVW_2018/papers/11131/Singh_Predicting_Action_Tubes_ECCVW_2018_paper.pdf},
doi = {10.5281/zenodo.3362942},
year = {2018},
date = {2018-08-23},
abstract = {In this work, we present a method to predict an entire `action tube' (a set of temporally linked bounding boxes) in a trimmed video just by observing a smaller subset of it. Predicting where an action is going to take place in the near future is essential to many computer vision based applications such as autonomous driving or surgical robotics. Importantly, it has to be done in real-time and in an online fashion. We propose a Tube Prediction network (TPnet) which jointly predicts the past, present and future bounding boxes along with their action classification scores. At test time TPnet is used in a (temporal) sliding window setting, and its predictions are put into a tube estimation framework to construct/predict the video long action tubes not only for the observed part of the video but also for the unobserved part. Additionally, the proposed action tube predictor helps in completing action tubes for unobserved segments of the video. We quantitatively demonstrate the latter ability, and the fact that TPnet improves state-of-the-art detection performance, on one of the standard action detection benchmarks - J-HMDB-21 dataset.},
note = {Proceedings of the ECCV 2018 Workshop on Anticipating Human Behaviour (AHB 2018), Munich, Germany, Sep 2018},
keywords = {Artificial Intelligence, Computer Science, Computer vision, Object recognition, Pattern Recognition, Robot, Robotics},
pubstate = {published},
tppubtype = {article}
}
An energy saving approach to active object recognition and localization Conference Annual Conference of the IEEE Industrial Electronics Society (IECON).Washington, DC, USA. 2018. Recognition self-awareness for active object recognition on depth images Conference BMVC 2018 2018. Predicting action tubes Journal Article 2018, (Proceedings of the ECCV 2018 Workshop on Anticipating Human Behaviour (AHB 2018), Munich, Germany, Sep 2018).
2018